Quantitative functional renormalization for three-dimensional quantum Heisenberg models

نویسندگان

چکیده

We employ a recently developed variant of the functional renormalization group method for spin systems, so-called pseudo Majorana group, to investigate three-dimensional spin-1/2 Heisenberg models at finite temperatures. study unfrustrated and frustrated systems on simple cubic pyrochlore lattices. Comparing our results with other quantum many-body techniques, we demonstrate high quantitative accuracy method. Particularly, lattice antiferromagnet ordering temperatures obtained from finite-size scaling one-loop data deviate error controlled Monte Carlo by $\sim5\%$ further confirm established values critical exponent $\nu$ anomalous dimension $\eta$. As PMFRG yields in good agreement QMC, but remains applicable when system is frustrated, next treat as paradigmatic magnetically disordered find nearly perfect two-loop static homogeneous susceptibility methods. broadening pinch points structure factor result thermal fluctuations width extrapolated limit $T\rightarrow0$. While extensions towards higher loop orders $\ell$ seem systematically improve approach also discuss subtleties increasing presence magnetic order. Overall, powerful technique magnetism wealth possible future applications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Renormalization Group for three-dimensional Quantum Magnetism

Yasir Iqbal, ∗ Ronny Thomale, † Francesco Parisen Toldin, ‡ Stephan Rachel, § and Johannes Reuther 4, ¶ Institute for Theoretical Physics and Astrophysics, Julius-Maximilians University of Würzburg, Am Hubland, D-97074 Würzburg, Germany Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Fre...

متن کامل

infinite dimensional garch models

مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...

15 صفحه اول

The Two-Loop Euler-Heisenberg Lagrangian in Dimensional Renormalization

We clarify a discrepancy between two previous calculations of the two-loop QED Euler-Heisenberg Lagrangian, both performed in proper-time regularization, by calculating this quantity in dimensional regularization. e-mail address D.FliegnerThPhys.Uni-Heidelberg.De e-mail address M.G.SchmidtThPhys.Uni-Heidelberg.De e-mail address [email protected] Supported by Deutsche Forschungsg...

متن کامل

Thermal entanglement in three-qubit Heisenberg models

Over the past few years much effort has been put into studying the entanglement of multipartite systems both qualitatively and quantitatively. Entangled states constitute a valuable resource in quantum information processing [1]. Quite recently, entanglement in quantum operations [2–4] and entanglement in indistinguishable fermionic and bosonic systems [5–7] have been considered. Entanglement i...

متن کامل

Quantum Heisenberg models and their probabilistic representations

These notes give a mathematical introduction to two seemingly unrelated topics: (i) quantum spin systems and their cycle and loop representations, due to Tóth and Aizenman-Nachtergaele; (ii) coagulation-fragmentation stochastic processes. These topics are nonetheless related, as we argue that the lengths of cycles and loops satisfy an effective coagulation-fragmentation process. This suggests t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SciPost physics

سال: 2022

ISSN: ['2542-4653']

DOI: https://doi.org/10.21468/scipostphys.12.5.156